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Abstract

In this paper I build a continuous time model of a complete financial market
with N heterogeneous agents whose constant relative risk aversion (CRRA) pref-
erences differ in their level of risk aversion. I find that preference heterogeneity is
able to replicate a high market price of risk and a low risk-free rate by separating
the markets for risky and risk free assets. This provides an explanation for the
equity risk premium and risk-free rate puzzles, while avoiding a preference for early
resolution of uncertainty inherent in non-seperable preferences, i.e. Epstein-Zin
preferences. Additionally, I find that changing the number of preference types has
a non-trivial effect on the solution. Finally, I show through a numerical example
that the model predicts several phenomena observed in financial data, namely a
correlation between dividend yields and the stochastic discount factor, a non-linear
response of volatility to shocks, and both pro- and counter-cyclical leverage cycles
depending on the assumptions about the distribution of preferences.

Introduction

Each day, trillions of dollars worth of financial assets change hands. This exchange

must be driven by some dimension of investor heterogeneity, otherwise individuals would

all hold the same portfolio. This paper focuses on heterogeneity in risk preferences as a

driver of trade and considers how the degree of heterogeneity affects model predictions.

In fact, it is shown how the introduction of more preference types allows the model to

explain the equity risk premium puzzle of Mehra and Prescott (1985) and the risk free

rate puzzle of Weil (1989). Although the average individual determines the market price
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of risk, the variance in preferences determines the risk free rate. These two moments

of the distribution of preferences provide two parameters with which to match both the

equity risk premium and the risk free rate. This implies that these two puzzles are simply

artifacts of the representative agent assumption. The effect works through separating the

markets for risky and risk free assets.

Markets for risky and risk free assets clear at different preference levels because these

two assets provide two different services to the individual. Risky assets provide agents

with claims on dividends, as well as capital gains from changes in prices. Risk free assets

provide a way to hedge the co-movement between one’s own consumption and returns on

risky assets. In the lingo of the capital asset pricing model, the risk free asset allows one

to choose a position along the security market line, increasing or reducing their exposure

to fundamental volatility. The price of risk free assets depends on how much exposure

individuals would like to have to this fundamental volatility. Agents borrow to increase

their exposure if they have low risk aversion and lend if they have high risk aversion.

The marginal agent in these two markets is not necessarily the same. Section 2.3 shows

how the two markets overlap, producing several groups of agents who desire different

portfolio compositions. The distribution of these groups determines the market price of

risk and the risk free rate. The risk free rate is low and the market price of risk high

when the variance in preferences is high. This is driven by demand and supply in the

market for risk free assets. If the variance in the distribution of preferences is zero, there

is no demand and no supply for risk free borrowing.

In addition to providing a partial explanation for the equity risk premium, results for

two types are shown to not necessarily generalize to many types. Changing the number

of preference types substantially alters model predictions. As previously mentioned, two

moments of the distribution of preferences are important for determining the market

price of risk and risk free rate. Although it is possible to construct models with different

numbers of types which match one of these moments, it is not possible to add a single

agent to a model and match both moments simultaneously. For a practical example,

consider a sample of 2 random integers and attempt to choose a third integer so that the

new set of 3 integers has the same mean and variance as the first set. Given two equations

in one unknown, there are not enough free variables. In the same way, the addition of

more agents will alter either the mean or the variance (or both) in the distribution of

preferences. This change will alter the level and dynamics of investment opportunities in

every period of the model.

In the equity risk premium puzzle first put forth by Mehra and Prescott (1985), under

a representative agent with CRRA preferences a single parameter determines both the

market price of risk and the risk free rate. One needs a very high level of risk aversion

to match excess returns on equity, but this produces a high risk free rate. Weil (1989)

pointed out that if one attempts to solve this issue by introducing a second preference
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parameter via Epstein-Zin preferences, the representative agent must have a very high

elasticity of inter-temporal substitution, a phenomenon known as the risk-free rate puzzle.

In addition, Epstein et al. (2014) recently added to the controversy by showing that an

Epstein-Zin representative agent must be willing to pay a very large amount for the early

resolution of uncertainty, implying that solving one puzzle with these preferences creates

another. In the model presented here, agents have constant relative risk aversion (a

fact noted empirically in Brunnermeier and Nagel (2008)) and are thus indifferent to the

resolution of uncertainty. Despite this, the model is still able to produce a high equity risk

premium and low risk-free rate by separating the markets for risky and risk-free assets.

Many authors have studied the problem of heterogeneous preferences under two pref-

erence types (e.g. Dumas (1989); Coen-Pirani (2004); Guvenen (2006); Bhamra and

Uppal (2014); Chabakauri (2013, 2015); Gârleanu and Panageas (2015); Cozzi (2011)).

However, there are few articles which study many types. Cvitanić et al. (2011) study

an economy populated by N agents who differ in their risk aversion parameter, their

rate of time preference, and their beliefs. Those authors focus on issues of long run

survival, while the present paper studies how changes in the distribution of preferences

affect the short run dynamics of the model, focusing on a single aspect of heterogeneity.1

Finally, a Markovian equilibrium in a single state variable is characterized. This allows

one to study how financial variables evolve over the entire state space as opposed to the

Malliavan calculus characterization in Cvitanić et al. (2011).

The model also relates to the study of games with a large number of heterogeneous

agents, otherwise known as Mean Field Games. Games featuring a continuum of agents

hearken back to Aumann (1964). However, their study in a stochastic setting has re-

cently garnered a large amount of attention thanks to a series of papers by Jean-Michel

Lasry and Pierre-Louis Lions (Lasry and Lions (2006a), Lasry and Lions (2006b), Lasry

and Lions (2007)). These authors studied the limit of N -player stochastic differential

games as N → ∞ and agents’ risk is idiosyncratic, dubbing the system of equations

governing the limit a ”Mean Field Game” (MFG). Their work has then been applied to

macroeconomics in works such as Moll (2014), Achdou et al. (2014), and Kaplan et al.

(2016). However, these papers focus on idiosyncratic risk and do not study the problem

of aggregate shocks, which is a lively area of research (e.g. Carmona et al. (2014), Car-

mona and Delarue (2013), Chassagneux et al. (2014), and Cardaliaguet et al. (2015)) and

which encompass classic macroeconomic models such as Krusell and Smith (1998). The

approach is either to use a stochastic Pontryagin maximum principle to derive a system

of forward-backward stochastic differential equations governing the solution, or to define

an infinite dimensional PDE governing the agents’ value functions. These approaches are

clear from a mathematical perspective, but very difficult to formulate for more complex

economic models (although Ahn et al. (2016) provides a method for approximating the

1Additionally, in the appendix I characterize the limit as N →∞.
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solution using the latter method).

This paper takes a different approach, solving the model with common noise using

Girsanov theory in the style of Harrison and Pliska (1981) and Karatzas et al. (1987).

One then recognizes that the SDF can be written as a function of a single state variable.

This implies a Markovian equilibrium in the style of Chabakauri (2013) and Chabakauri

(2015). The solution is characterized by mean field dependence through the control, as

opposed to the state. This points towards a new way to consider control in mean field

financial models. If the dynamics of the stochastic discount factor can be written as a

function of a small number of state variables, then the atomistic agents do not need to

consider the entire distribution of individual states in order to solve their problem. This

result is driven by complete markets, as ratios of marginal utilities are constant, and

requires further study for incomplete markets.

The paper is organized as follows: in Section 1, I construct a continuous time model

of financial markets populated by a finite number of agents who differ in their preferences

towards risk. Section 2 characterizes the equilibrium. Section 3 provides numerical

results. Section 4 concludes. The more technical analysis and proofs have been relegated

to the appendix.

1. The Model

Consider a continuous time Lucas (1978) economy populated by a number, N , of

heterogeneous agents indexed by i ∈ {1, 2, ..., N}. All agents discount future utility at

the same exponential rate ρ. Each agent has instantaneous preferences over consumption

given by constant relative risk aversion (CRRA) utility with relative risk aversion γi:

Ui(cit) =
c1−γiit

1− γi
∀i ∈ {1, 2, ..., N}

Agents can continuously trade in shares, αit, of a per-capita dividend process, Dt, which

follows a geometric Brownian motion:

dDt

Dt

= µDdt+ σDdWt (1)

where µD and σD are constants, and where D0 is given. In addition agents can trade

in an instantaneously risk-free bond, whose shares are denoted bit. Initial shares in the

risky asset are drawn according to a density (γi, αi0) ∼ g(γ, α) and initial bond holdings

are assumed to be zero. Risky share prices, St, and risk-free bond prices, S0
t , follow an

Itô process and an exponential process, respectively:
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dSt
St

= µtdt+ σtdWt (2)
dS0

t

S0
t

= rtdt (3)

These assumptions imply that an agent’s wealth is defined by Xit = αitS0+bitS
0
t . Denote

by πit = αitSt/Xit the share of an individual’s wealth invested in the risky stock.

1.1. Budget Constraints and Individual Optimization

An individual agent’s constrained maximization subject to instantaneous changes in

wealth can be written as:

max
{cit,πit}∞t=0

E
∫ ∞
0

e−ρt
c1−γiit

1− γi
dt

s.t. dXit =

[
Xit

(
rt + πit

(
µt +

Dt

St
− rt

))
− cit

]
dt

+ πitXitσtdWt

where the constraint represents the dynamic budget of an individual.

1.2. Market Clearing

Markets for consumption, wealth, and risk-free borrowing are assumed to clear, such

that

1

N

∑
i

cit = Dt ,
1

N

∑
i

(1− πit)Xit = 0 ,
1

N

∑
i

πitXit = St (4)

1.3. Equilibrium

Definition 1. An equilibrium in this economy is defined by a set of processes

{rt, St, {cit, Xit, πit}Ni=1} ∀ t, given preferences and endowments, such that {cit, Xit, πit}
solve the agents’ individual optimization problems and the market clearing conditions in

Eq. (4) are satisfied.

I consider Markovian equilibria where the problem can be written as a function of some

finite number of state variables. In particular, it will be shown that Dt is a sufficient

state variable to characterize the equilibrium.
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2. Equilibrium Characterization

To solve this problem I first use the martingale method to show how the SDF can be

written as a function of a single state variable. I then use the Hamilton-Jacobi-Bellman

(HJB) equation to derive a system of ordinary differential equations which determines

the portfolio, stock price, and stock price volatility.

2.1. The Static Problem

Following Karatzas and Shreve (1998) define the SDF, Ht, as

dHt

Ht

= −rtdt− θtdWt where θt =
µt + Dt

St
− rt

σt
(5)

where H0 = 1.0. Here θt represents the market price of risk. Following Proposition 2.6

from Karatzas et al. (1987), we can rewrite each agent’s dynamic problem as a static one

beginning at time t = 0

max
{cit}∞t=0

E
∫ ∞
0

e−ρt
c1−γiit

1− γi
dt

s.t. E
∫ ∞
0

Htcitdt ≤ Xi0

If we denote by Λi the Lagrange multiplier in individual i’s problem, then the first order

conditions can be rewritten as

cit =
(
eρtΛiHt

)−1
γi (6)

which holds for every agent in every period.

Given each agent’s first order conditions, we can derive an expression for consumption

as a fraction of per-capita dividends.

Lemma 1. One can define the consumption of individual, i, at any time, t, as a share

ωit of the per-capita dividend, Dt, such that

cit = ωitDt where ωit =
N (Λie

ρtHt)
−1
γi∑

j (ΛjeρtHt)
−1
γj

(7)

This expression recalls the results in Basak and Cuoco (1998) or Cuoco and He (1994),

where ωit acts like a time-varying Pareto-Negishi weight. In those works, however, this

weight arises from an imperfection in the information structure or some exogenous con-

straint. Here the markets are complete, but this weight is still time varying. The weight

an agent gives to the SDF differs depending on the agents’ risk aversion, despite the value

of the SDF being equal across agents. These consumption weights represent a driving
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quantity in the model and can be defined implicitly in terms of aggregate consumption,

as in the classical results of Arrow and Debreu (1954).

Lemma 2. Consumption weights can be defined as an implicit function such that ωit =

ωi(Dt), which satisfies for all i

1

N

∑
j

λ
−1
γj

ji ωi(Dt)
γi
γjD

γj−γi
γj

t = 1 where λji =
Λj

Λi
(8)

The ability to define the consumption weight as an implicit function of the dividend

provides a convenient tool for the study of the model’s equilibrium. It is well understood

(Cvitanić et al. (2011)) that the dominant agent in the long run depends on the long

run level of aggregate consumption. If Dt → ∞, then the least risk averse agent will

accumulate all of the consumption weight, while if Dt → 0 then the most risk averse agent

will dominate. However, Lemma 2 characterizes consumption weights over the entire state

space. In addition it can be shown that consumption weights are increasing/decreasing

as a function of Dt for the least/most risk averse agent, respectively.

2.2. The Risk-Free Rate and Market Price of Risk

It is possible to define the interest rate and market price of risk as functions of the

consumption weights. This definition in turn implies they can be calculated as functions

of a single state, given the characterization of consumption weights over Dt. The following

lemma is useful to derive an expression for the risk free rate and the market price of risk

and sheds light on individual consumption patterns:

Lemma 3. An agent’s consumption follows an Itô process with drift and diffusion coef-

ficients citµ
c
it and citσ

c
it such that

rt = ρ+ µcitγi − (1 + γi)γi
(σcit)

2

2

θt = σcitγi

which hold simultaneously for all i.

These formulas resemble those one would find in a standard representative agent model.

However, these expressions hold simultaneously for all agents. Shocks cause the growth

rate and volatility of consumption for each agent to adjust, while for a representative

agent they would be replaced by the drift and diffusion of the dividend process. We can

rewrite Lemma 3 in terms of µcit and σcit and differentiate in order to better understand

how these values adjust:
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∂µcit
∂θt

=
1 + γi
γ2i

θt (9)

∂µcit
∂rt

=
1

γi
(10)

∂σcit
∂θt

=
1

γi
(11)

∂σcit
∂rt

= 0 (12)

The derivatives of individual consumption parameters imply heterogeneity in the size

of response to changes in financial variables, but homogeneity in sign. Eqs. (9) and (10)

imply that the growth rate of every individual’s consumption is increasing in both the

market price of risk and in the interest rate. A higher market price of risk implies greater

returns. These returns mean any given agent earns more on their portfolio and a wealth

effect dominates. In regards to interest rates, agents choose their consumption growth

conditional on their consumption at time t. Thus any change in the interest rate must

pivot their life-time budget constraint through this point. This produces a positive and

dominant wealth effect whether an agent is a net-borrower or -lender, as an increase in the

interest rate makes lifetime consumption less costly. In addition, an increase in the market

price of risk increases volatility of consumption for all agents, while the interest rate has

no effect (Eqs. (11) and (12)). A higher market price of risk implies a greater volatility

(in absolute value) of the SDF. Because of this, the present value of discounted future

consumption becomes more volatile and in turn consumption becomes more volatile.

Given Lemma 3, we can derive expressions for the market price of risk and the risk

free rate:

Proposition 1. The interest rate and market price of risk are fully determined by the

sufficient statistics ξt = 1
N

∑
i
ωit
γi

and φt = 1
N

∑
i
ωit
γ2i

such that

rt = ρ+
µD
ξt
− 1

2

ξt + φt
ξ3t

σ2
D (13)

θt =
σD
ξt

(14)

Proposition 1 is in terms of only certain moments of the joint distribution of consumption

shares and risk aversion: ξt = 1
N

∑
i
ωit
γi

and φt = 1
N

∑
i
ωit
γ2i

. These moments represent

weighted averages of elasticity of intertemporal substitution (EIS). An agent’s preferences

only affect the market clearing interest rate and market price of risk up to their share in

consumption.

The expressions in Proposition 1 are similar to those one would find in a representative

agent economy. The market price of risk is instantaneously equal to that which would

prevail in a representative agent economy populated by an agent whose elasticity of inter-

temporal substitution is equal to ξt. The interest rate is reminiscent of the interest rate

in the same hypothetical economy, but not quite equal. We could rewrite Eq. (13) as the
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interest rate that would prevail in our hypothetical economy plus an extra term:

rt = ρ+
µD
ξt
− 1

2

ξt + 1

ξ2t
σ2
D−

1

2

1

ξt

(
φt

ξ2t
− 1

)
σ2
D

This additional term (in bold) would be zero if φt = ξ2t . However, we can apply the

discrete version of Jensen’s inequality to show that φt > ξ2t , ∀ t < ∞ if N > 1. This

causes the additional term to be strictly negative. The risk free rate is then lower than

it would be in an economy populated by a representative agent. This introduces a sort

of ”heterogeneity wedge”, which I’ll define as φt
ξ2t
> 1, between the price of risk and the

price for risk free borrowing. This wedge is also equal to one plus the squared coefficient

of variation of the weighted EIS. The wedge will be higher when the variation in the EIS

is higher, weighted by consumption shares. The driving force behind the heterogeneity

wedge is the separation between the marginal agents in the markets for risky and risk-free

assets that occurs when agents differ in their preferences towards risk.

2.3. Equity Risk Premium and Marginal Agents

This subsection discusses a metaphorical comparison to partial equilibrium to better

explain the intuition for why the market price of risk can be high and interest rate

low when preferences are heterogeneous2. The equity risk premium and risk free rate

puzzles focus on the problem of the representative agent model producing both a high

risk premium and high risk free rate or requiring a very impatient agent, respectively,

in order to match the equity risk premium and risk free rate. Heterogeneous preferences

can match both of these financial variables by separating the markets for risky and risk

free assets.

The way in which preference heterogeneity generates a low risk free rate and high

market price of risk can be seen through the marginal agents in the markets for risky

and risk free assets. Define {γrt, γθt} to be the RRA parameters in a representative agent

economy that would produce the same interest rate and market price of risk, respectively,

as in the heterogeneous preferences economy. These preference levels can be interpreted

as the marginal agent in each market and are given in Proposition 2

Proposition 2. The marginal preference levels γrt and γθt are given by

γrt =
µD
σ2
D

− 1

2
±

√
µD
σ2
D

(
µD
σ2
D

− 1− 2

ξt

)
+
ξt + φt
ξ3t

+
1

4

γθt =
1

ξt

2The marginal agents discussed in this section may or may not exist in the economy, but are useful
for discussing individuals relative to market clearing preference levels.
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It cannot be ruled out that the two roots γrt± exist, but it can be shown that

γ ≤ γrt− ≤ γθt ≤ γrt+ ≤ γ

The inequalities in Proposition 2 imply that the markets for risky and risk-free assets

separate and do not coincide in finite t. This separation creates four groups of agents:

investors, divestors, borrowers, and lenders. In addition, these groups overlap and indi-

viduals may desire to borrow or lend at the same time that they wish to invest or divest

(see Figure 1). Each market can be thought of as an auction. When a single representa-

tive agent bids, their price must clear both markets. However, when many heterogeneous

agents show up to each market there is nothing to impose a single market clearing prefer-

ence level. In fact, the non-linearity/non-monotonicity of the interest rate as a function

of relative risk aversion ensures that the two preference levels do not coincide in finite

time.

γ γrt− γθt γrt+ γ

Investor Divestor

Borrower Lender Borrower

Fig. 1. An agent’s position relative to γrt and γθt sheds light on their consumption and
saving decisions.

The overlap between these two markets causes the interest rate to be low relative to

the market price of risk, producing a high equity risk premium, which can explain the

equity risk premium and risk-free rate puzzles of Mehra and Prescott (1985) and Weil

(1989). Figure 2 plots the market price of risk and risk free rate for different values of

ξt and φt. When ξt is low, the market price of risk is high. This corresponds to the

marginal preference level γθt being high, or to a very risk averse agent pricing the risky

asset. At the same time a high φt produces a low risk free rate. This corresponds to a

high variance in preferences, or a greater diversity in the market. In this case γrt− is very

low and the marginal agent pricing risk free assets has low risk aversion. This can be

explained through a supply and demand argument, as the variance in the distribution of

preferences determines both the supply and demand for bonds. Increasing the variance

while keeping the mean of the distribution fixed requires shifting consumption weights

towards the high risk aversion agents, as their EIS is very low. Risk averse agents tend to

be net lenders, as indicated by Figure 1, so this higher variance shifts out the demand for

bonds and shifts in the supply. This causes an increase in the price of bonds and, in turn,
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a fall in the interest rate. Heterogeneity in preferences can in this way produce a low

interest rate and a high market price of risk depending on where consumption weights

are concentrated.

(a) Market Price of Risk (b) Risk Free Rate

Fig. 2. Figure 2(a) plots the market price of risk as a function of average EIS, ξt. Fig-
ure 2(b) is a contour plot of the risk free rate as a function of average EIS and its square,
φt (a measure of variance in preferences).

Preference heterogeneity beyond two preference types allows one the additional free

variable necessary to match both the risk free rate and market price of risk, without

introducing a preference for early resolution of uncertainty. In Epstein et al. (2014), it is

shown that in order to match the equity risk premium using Epstein-Zin preferences, one

must introduce a strong preference for the early resolution of uncertainty. In fact, the

authors show that the representative agent would have to be willing to pay an exorbitant

amount to resolve the uncertainty. In the model presented here, agents are CRRA and,

thus, indifferent to early or late resolution of uncertainty. High expected returns in this

model are driven in part by agents preferences, and in part by the dynamics of their

consumption weights which can be derived explicitly.

2.4. Consumption Weight Dynamics

We can study the dynamics of an agent’s consumption weight by applying Itô’s lemma

to the expression given in Lemma 1.

Proposition 3. Assuming consumption weights follow an Itô process such that

dωit
ωit

= µωitdt+ σωitdWt
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an application of Itô’s lemma to (7) gives expressions for µωit and σωit:

µωit = (rt − ρ)

(
1

γi
− ξt

)
(15)

+
θ2t
2

[(
1

γ2i
− φt

)
− 2ξt

(
1

γi
− ξt

)
+

(
1

γi
− ξt

)]
σωit = θt

(
1

γi
− ξt

)
(16)

Individual consumption weights evolve as functions of ξt and φt. Consider first the

case where an agent’s preferences coincide with the weighted average, ie γi = γθt = 1
ξt

(as in section 2.3). In this case ωit is instantaneously deterministic, i.e. σωit = 0. This

determinism arises because the agent represents the marginal agent in the market for

risky assets. However, notice that in this case µωit = θ2t

(
1
γ2θt
− φt

)
= σ2

D

(
1− φt

ξ2t

)
. The

agent is moving deterministically out of the marginal position. The speed with which

this is occurring is driven by the heterogeneity wedge, φt
ξ2t

. When this wedge is high, the

rate at which the marginal agent moves out of the marginal position is greater.

Next consider the case where an agent is more risk averse, that is γi > γθt. Then σωit <

0 and agent i’s weight is negatively correlated to the market. This negative correlation

implies that if an agent is more risk averse than the average then their consumption share

increases under negative shocks and decreases under positive shocks. This co-movement

can be thought of as playing a ”buy low, sell high” strategy for consumption. Conversely,

less risk averse agents’ shares co-vary positively with the market, i.e. σωit > 0. These less

risk averse agents are impatient and value present dividends over future dividends. A

fall in the level makes agents poorer today and in the near future, so for these impatient

agents the income effect dominates and their lifetime income shifts substantially. To

compensate they must shift consumption. These are the day-traders, riding booms and

busts to try to make a quick buck while not losing their shirts. Although they may benefit

in the short run, their consumption share can be more volatile than the economy.

2.5. Asset Prices and Portfolios

Asset prices and portfolios can be derived via a combination of the HJB and the mar-

tingale method. In fact it can be shown (and verified) that the individual maximization

problem can be formulated as a function of only two state variables, individual wealth

and the dividend process. Recall the first order condition Eq. (6) and substitute this into

the market clearing condition for consumption:

1

N

∑
i

(
eρtHt

)−1
γi = Dt
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This shows that the SDF is an implicit function only of the dividend process Dt and time.

Given this, it is natural to look for a solution to an agent’s maximization in the two state

variables (Xit, Dt) and time. However, given the homogeneity of CRRA preferences,

the value functions factor and the dependence on wealth and time disappears, giving a

solution in a single state variable. This solution is given in Proposition 4:

Proposition 4. Given Lemma 2 and Proposition 1, it is possible to define the interest

rate and market price of risk as functions of dividends, Dt, such that rt = r(Dt) and

θt = θ(Dt). Assuming there exists a Markovian equilibrium in Dt, the individuals’ wealth-

consumption ratios, Vi(Dt) = Xit/cit, satisfy ODE’s given by

σ2
DD

2
t

2
V ′′i (Dt) +

[
1− γi
γi

θ(Dt)σD + µD

]
DtV

′
i (Dt)

+

[
(1− γi)r(Dt)− ρ+

1− γi
2γi

θ(Dt)
2

]
Vi(Dt)

γi
+ 1 = 0

(17)

which satisfy boundary conditions

Vi(D
∗) =

γi

ρ− (1− γi)
(
θ(D∗)2

2γi
+ r(D∗)

) for D∗ ∈ {0,∞}
(18)

This low dimensional, Markovian equilibrium provides a convenient tool for studying the

solution to the model. Typically in heterogeneous preference models the number of state

variables grows with the number of agents (see e.g. Gârleanu and Panageas (2015)).

However, here the number of state variables remains small for an arbitrary number of

agents. In addition, this solution provides a convenient characterization of portfolios and

volatility as functions of individual wealth/consumption ratios.

Proposition 5. If wealth/consumption ratios satisfy the ODE’s given in Proposition 4,

then portfolios and volatility are given by:

πi(Dt) =
1

γiσt

(
θ(Dt) + γiσDDt

V ′i (Dt)

Vi(Dt)

)
(19) σ(Dt) = σD

(
1 +Dt

S ′(Dt)

S(Dt)

)
(20)

where the price/dividend ratio S(Dt) satisfies

S(Dt) =
1

N

∑
i

ωitVi(Dt) (21)

Several facts jump out from these expressions. First, one can notice in Eq. (19) that

portfolios separate into two terms as is common in the literature (see Merton (1969,

1971)): a myopic term and a hedging term. The myopic term is the market price of

risk scaled by risk preferences and volatilities, representing the portfolio desired at the

13



current point in time. The hedging term is determined by the shape of the agent’s wealth

consumption ratio and the fact that the investment opportunity set is inversely correlated

with the market. A fall in the dividend process causes the more risk averse agents to

dominate, reducing asset prices relative to dividends and increasing the dividend yield.

Thus, the agent hedges possible losses in dividends with capital gains through their risky

shares.

In addition, the model exhibits excess volatility which is inversely correlated to the

market, determined by the shape of the price/dividend ratio. In Eq. (20) stock price

volatility is the fundamental volatility, σD, plus the instantaneous volatility of the div-

idend scaled by the rate of change in the price/dividend ratio. As before, a fall in the

dividend causes the risk averse agents to dominate, which in turn implies a fall in the

price/dividend ratio. Thus the price/dividend ratio has a positive slope everywhere, but

it is in fact concave. A negative shock causes this slope to rise, increasing the volatility.

This fact is reminiscent of the implied volatility smile inherent in options pricing data

(Fouque et al. (2011)).

Given the above proposed equilibrium, following identical steps as Chabakauri (2015),

one can show existence of an equilibrium satisfied by the above proposition.

Proposition 6. Suppose there exist bounded positive functions V (D) ∈ C1[0,∞) ∪
C2[0,∞) that satisfy the system of ODE’s in Eq. (17) and boundary conditions in Eq. (18).

Additionally, assume the processes θt, σt, and πit are bounded and that |σt| > 0. Then

there exists a Markovian equilibrium satisfied by Propostions 1, 4 and 5

These equations recall the results in Chabakauri (2013, 2015), but characterize the equi-

librium in a slightly different way. In particular the dimension remains low by studying an

equilibrium taking only the dividend as a state variable instead of consumption weights.

In fact, it is easy to study the limiting case of a continuum of types given that the dimen-

sion of the state space does not change with the number of preference types, although

this has been left to the appendix.

3. Simulation Results and Analysis

In this section, I review the simulation strategy as well as some simulation results. The

underlying assumption is that I am attempting to approximate a continuous distribution

of types (for a recent survey on estimating risk preferences see Barseghyan et al. (2015)

and for evidence on heterogeneity see Chiappori et al. (2012)). One could argue that this

approximation is the goal of any model of heterogeneous risk preferences with finite types,

as in Dumas (1989), Gârleanu and Panageas (2015), Chabakauri (2013), or Chabakauri

(2015), but that one assumes finite types for tractability and with the hope that the
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results generalize. This section tries to convince you that results for two types do not

necessarily generalize to more types. 3

For all of the simulations, I hold the following group of parameters fixed at the given

values: µD = 0.01, σD = 0.032, and ρ = 0.02. These settings correspond to a yearly

parameterization. Solutions are represented over the state space, Dt ∈ [0,∞), which is

truncated for clarity as most of the action is in the lower regions. Additionally, assume

that all agents begin with an initial wealth such that their consumption weights are

equalized at t = 0. I present here results for different numbers of types and leave to the

appendix continuous types and robustness results.

Assume preferences are distributed uniformly over [1.1, 18.0]. Consider changing the

number of evenly spaced types over the support. I consider the cases where N = 2, 5, 10

and 100. Plots are presented for particular variables showing the results for the different

settings. The change in the number of types is shown to have a significant effect on the

level of all aggregate variables. This effect implies that mis-specification of the support

of the distribution of risk preferences has a non-trivial effect on the model’s short run

predictions about market variables.

Fig. 3. Sufficient statistics for the distribution of the risk aversion with finite types, where
ξt = 1

N

∑N
i=1

ωit
γi

and φt = 1
N

∑N
i=1

ωit
γ2i

. N corresponds to the number of types.

Consider first the two key pricing variables ξt and φt, as shown in Figure 3. You can

immediately notice that the level, slope, and curvature of both of these measures changes

substantially for different numbers of preference types. Additionally you can notice that

the heterogeneity wedge, defined as φ(t)
ξ(t)2

is also changing. Changing the mass of agents

over the support changes the rate of convergence, as in order for the least risk averse

agent to dominate they must accumulate a greater consumption share to bring ξt and φt

to the same long run level.

In Figure 4 you can see that the level, slope, and curvature of the interest rate and

market price of risk are different for different numbers of preference types. For two types

the convergence is fast. Both variables rise and their convergence becomes slower as

we increase the number of agents, implying a more long-lived volatility in asset pricing

3For details on the solution method, see appendix B.
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Fig. 4. Interest rate, market price of risk, dividend yield, and volatility for different
numbers of agents.

variables. This volatility is consistent with what we observe in financial markets, in that

the interest rate and market price of risk do indeed vary with aggregate output. In

addition, the change in levels is substantial, with the interest rate being 100 basis points

higher at D = 2.0 for 100 agents than for 2 agents.

Changes in the interest rate and market price of risk caused by changes in the number

of types have noticeable effects on risky asset prices. Asset prices fall in the face of

higher levels of the interest rate and market price of risk, while volatility rises (Figure 4).

More preference types drives down the average EIS. Meanwhile, more types reduces the

speed of convergence, causing small shocks to produce larger changes in asset prices and

increasing the volatility. In addition, volatility has a large spike for low values of the

dividend when there is less heterogeneity, implying that downside volatility is greater

when preference heterogeneity is low. Beyond simply the level, it is interesting to note

the slope and curvature of volatility. A negative shock increases volatility, while a positive

shock reduces volatility to a lesser degree. This points to one possible explanation of the

short-coming often noted in the celebrated work of Black and Scholes (1973), namely

constant volatility. The implied volatility estimated from options pricing data exhibits
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a similar negative slope and convex shape, known as the ”volatility smile”4. This model

produces such stochastic volatility and, in particular, greater downside volatility. In

addition to stochastic volatility, the dividend yield co-moves with aggregate consumption,

implying predictability in stock market returns as observed in the data by Campbell

and Shiller (1988a,b). This is driven by co-movement between the SDF and aggregate

consumption, similar to that observed in Mankiw (1981).

On the bond side, we see a non-zero and stochastic supply of credit, creating ”leverage

cycles”. Increasing the number of agents increases leverage, as shown in Figure 5. This

is driven by two forces. More preference types means a larger supply of bonds. At the

same time, more types reduces asset prices, reducing the value of agents’ collateral and

further increasing leverage. However, notice that a rise in Dt generates a fall in leverage

and vice-versa. This implies a counter-cyclical leverage cycle, opposite that postulated

in the literature (e.g. Fostel and Geanakoplos (2008)). This contradiction arises from a

difference in the response of borrowing and asset prices. Both are positively correlated

with the dividend, but since asset prices are more volatile a fall in the dividend causes a

greater fall in asset prices, which increases total leverage.

Fig. 5. Leverage, total borrowing, and asset prices for different numbers of agents.

In summation, heterogeneous preferences can explain several qualitative features about

financial markets, but the choice of the number of preference types is important if one

believes there is a continuum of types.

4. Conclusion

In this paper I have studied how the distribution of risk preferences affects financial

variables, consumption shares, and portfolio decisions. The distribution of risk prefer-

ences has a large effect on financial variables driven mainly by consumption weighted

averages of the EIS. In addition increasing the number of preference types can provide an

explanation for the equity risk premium and risk free rate puzzles of Mehra and Prescott

4See Lorig and Sircar (2016) for a nice review or Guyon and Henry-Labordère (2013) for a thorough
mathematical treatment of several modeling approaches.
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(1985); Weil (1989). This is caused by hetereogeneity allowing markets to clear at dif-

ferent marginal preference levels. Agents’ relative position to these marginal preference

levels determines four groups of market participants: investors, divestors, borrowers, and

lenders.

The model can produce both pro- and counter-cyclical leverage cycles depending on

the distribution of preferences. The cyclicality of the leverage cycle is driven by the

volatility of total borrowing and asset prices. When total borrowing is more volatile than

asset prices, leverage cycles are pro-cyclical, and vice-versa. In order for total borrowing

to be volatile, there needs to be a large mass of lenders and a small, wealth-poor, group

of low risk aversion borrowers.

Additionally, dividend yield in this model co-moves negatively with the growth rate in

dividends. This co-movement implies a predictable component in stock market returns.

Dividends fall when a negative shock hits the economy and the distribution of consump-

tion shares shifts towards more risk averse agents. This shift reduces asset prices and

predicts a faster growth rate in the future. Papers such as Campbell and Shiller (1988a),

Campbell and Shiller (1988b), Mankiw (1981), and Hall (1979) drew differing conclusions

about the standard model of asset prices, but, broadly speaking, they all deduced that

there was some portion of asset prices that was slightly predictable as a function of the

growth rate in aggregate consumption. In the model presented here, we can take a step

towards explaining this predictability as the dividend yield co-moves with the SDF.

An interesting direction for future research would be to carry this approach over to

incomplete markets, as in Chabakauri (2015), to study how borrowing constraints would

affect the accumulation of assets and market dynamics.
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Gârleanu, N. and Panageas, S. (2015). Young, old, conservative and bold: The implica-

tions of heterogeneity and finite lives for asset pricing. Journal of Political Economy,

123(3):670–685.

Guvenen, F. (2006). Reconciling conflicting evidence on the elasticity of intertempo-

ral substitution: A macroeconomic perspective. Journal of Monetary Economics,

53(7):1451–1472.

Guyon, J. and Henry-Labordère, P. (2013). Nonlinear option pricing. CRC Press.

Hall, R. E. (1979). Stochastic implications of the life cycle-permanent income hypothesis:

theory and evidence. NBER Working Paper, (R0015).

Harrison, J. M. and Pliska, S. R. (1981). Martingales and stochastic integrals in the theory

of continuous trading. Stochastic processes and their applications, 11(3):215–260.

Kaplan, G., Moll, B., and Violante, G. L. (2016). Monetary policy according to hank.

Technical report, Working Paper.

Karatzas, I., Lehoczky, J. P., and Shreve, S. E. (1987). Optimal portfolio and consump-

tion decisions for a small investor on a finite horizon. SIAM journal on control and

optimization, 25(6):1557–1586.

Karatzas, I. and Shreve, S. E. (1998). Methods of mathematical finance, volume 39.

Springer Science & Business Media.

20



Krusell, P. and Smith, Jr, A. A. (1998). Income and wealth heterogeneity in the macroe-

conomy. Journal of Political Economy, 106(5):867–896.

Lasry, J.-M. and Lions, P.-L. (2006a). Jeux à champ moyen. i–le cas stationnaire. Comptes
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Appendix A. Proofs

Proof of Lemma 1. To solve for the consumption weight of an individual i, take the

market clearing condition in consumption and divide through by agent i’s consumption,

then substitute for individual consumption using Eq. (6)

1

N

N∑
j=1

cjt = Dt ⇔ cit =
cit

1
N

∑N
j=1 cjt

Dt =

 N (eρtΛiHt)
−1
γi∑N

j=1 (eρtΛjHt)
−1
γj

Dt = ωitDt

Proof of Lemma 3. Model consumption as a geometric Brownian motion:

dcit
cit

= µcitdt+ σcitdWt (22)

Solve for Ht in Eq. (6), apply Itô’s lemma, and match coefficients to those in Eq. (5),

which gives the result.

Proof of Proposition 1. Recall the definition of consumption dynamics in (22) and the

market clearing condition for consumption in (4). Apply Itô’s lemma to the market

clearing condition:

1

N

∑
i

cit = Dt ⇒
1

N

∑
i

dcit = dDt

By matching coefficients we find

µD =
1

N

∑
i

ωitµ
c
it , σD =

1

N

∑
i

ωitσ
c
it

Now use Lemma 3 to substitute the values for consumption drift and diffusion, then solve

for the interest rate and the market price of risk, which gives the result.

Proof of Proposition 2. Consider the interest rate and market price of risk which prevail

in two representative agent economies populated by agents with CRRA parameters γrt

and γθt, respectively:

rt = ρ+ µDγrt − γrt(1 + γrt)
σ2
D

2

θt = σDγθt

Equate these to Eqs. (13) and (14) and solve for γrt and γθt. To find the inequality, take
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γrt ≶ γθt which is equivalent to

±

√
µD
σ2
D

(
µD
σ2
D

− 1− 2

ξt

)
+
ξt + φt
ξ3t

+
1

4
≶

1

ξt
+

1

2
− µD
σ2
D

If we take only the negative root on the left hand side, we find no matter the sign on

the right that γrt ≤ γθt. In the case of the positive root γrt ≥ γθt, but this marginal

preference level tends to be very high. There could exist settings where this positive root

exists in the support, but for simplicity I consider in this paper only settings where this

root lies outside of the support.

Proof of Proposition 3. Assume that consumption weights follow a geometric Brownian

motion given by

dωit
ωit

= µωitdt+ σωitdWt (23)

Apply of Itô’s lemma to the definition of consumption weights in (??):

ωit =
(ΛieρtHt)

−1
γi∑

j (ΛjeρtHt)
−1
γj

⇔ ωi(t) =

[∑
j

Λ
−1
γj

j Λ
1
γi
i (eρtHt)

1
γi
− 1
γj

]−1

Matching coefficients gives the result.

Proof of ??. Assume there exists a Markovian equilibrium in Dt. Then an individual’s

Hamilton-Jacobi-Bellman (HJB) equation writes

0 = max
cit,πit

{
e−ρt

c1−γiit − 1

1− γi
+
∂Jit
∂t

+ [Xit (rt + πitσtθt)− cit]
∂Jit
∂Xit

+µDDt
∂Jit
∂Dt

+ σDσtπitDtXit
∂2Jit

∂Xit∂Dt

+
1

2

[
X2
itπ

2
.itσ

2
t

∂2Jit
∂X2

it

+ σ2
DD

2
t

∂2Jit
∂D2

t

]} (24)

subject to the transversality condition limt→∞ EtJit = 0 for all i s.t. γi > γ, as the agent

with the lowest risk aversion will dominate in the long run (Cvitanić et al. (2011)). First

order conditions imply

cit =

(
e−ρt

∂Jit
∂Xit

)γi
(25)

πit = −
(
Xitσt

∂2Jit
∂X2

it

)−1 [
θt
∂Jit
∂Xit

+ σDDt
∂2Jit

∂Xit∂Dt

]
(26)

Assume that the value function is separable as

Jit(Xit, Dt) = e−ρt
X1−γi
it Vi(Dt)

γi

1− γi
(27)
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Substituting Eq. (27) into Eqs. (25) and (26) gives

cit =
Xit

Vi(Dt)
(28)

πit =
1

γiσt

(
γiσDDt

V ′i (Dt)

Vi(Dt)
+ θt

)
(29)

which shows that Vi(Dt) is the wealth-consumption ratio as a function of the dividend.

Next, substitute Eqs. (27) to (29) into Eq. (24) and simplify to find

0 =1 +
σ2
DD

2
t

2
V ′′i (Dt) +

[
1− γi
γi

θtσD + µD

]
DtV

′
i (Dt)

+

[
(1− γi)rt − ρ+

1− γi
2γi

θ2t

]
Vi(Dt)

γi

(30)

Which gives an ode for the wealth-consumption ratio. On the boundaries D = 0 and

D → ∞, the most risk averse and the least risk averse agent dominates, respectively

(Cvitanić et al. (2011)). The boundary conditions correspond to the value functions for

individuals when prices are set by these dominant agents. One could identically take the

limit in the ODE itself to arrive at the boundary conditions.

Define the price-dividend ratio as a function of the single state variable: S(Dt) = St
Dt

.

Apply Itô’s lemma to DtS = St and match coefficients to find

µt = D2
t +

(σDDt)
2

2

S ′′(Dt)

S(Dt)
Dt +DtµD +

S ′(Dt)

S(Dt)
(σDDt)

2

σt = σD

(
1 +Dt

S ′(Dt)

S(Dt)

)
Taking the market clearing condition for wealth, rewrite S(Dt) as a function of Dt:

St =
1

N

∑
i

Xit ⇔
St
Dt

= S(Dt) =
1

N

∑
i

Xit

Dt

=
1

N

∑
i

Xit

cit

cit
Dt

=
1

N

∑
i

V (Dt)ωit

which gives S(Dt) given that ωit = fi(Dt)

Proof of Proposition 6. This proof proceeds identically to Chabakauri (2015). Let Vi(D) ∈
C1[0,∞)∪C2[0,∞), 0 < Vi(D) ≤ C1, |πitσt| < C1, and |θt| < C1, where C1 is a constant.
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Additionally, assume

E
∫ ∞
0

e−ρt
c1−γiit

1− γi
dt <∞ (31)

E
∫ T

0

Ji(Xit, Dt, t)
2dt <∞ ∀ T > 0 (32)

lim sup
T→∞

EJi(Xit, Dt, t) ≥ 0 (33)

Define Ut =
∫ t
0
e−ρtc1−γiiτ /(1− γi)dτ + Ji(Xit, Dt, t), which satisfies dUt = µUtdt+ σUtdWt

such that

µUt =

(
e−ρt

c1−γiit − 1

1− γi
+
∂Jit
∂t

+ [Xit (rt + πitσtθt)− cit]
∂Jit
∂Xit

+ µDDt
∂Jit
∂Dt

(34)

+σDσtπitDtXit
∂2Jit

∂Xit∂Dt

+
1

2

[
X2
itπ

2
.itσ

2
t

∂2Jit
∂X2

it

+ σ2
DD

2
t

∂2Jit
∂D2

t

])
(35)

σUt = Jit

(
(1− γi)πitσt + γiDtσD

V ′i (D)

Vi(D)

)
= Jit (πitσt − θt) (36)

Notice that µUt is simply the PDE inside the max operator in the HJB Eq. (24), thus

µUt ≤ 0. By the boundedness conditions, Ut is integrable and because its drift is negative

it is a supermartingale, thus Ut ≥ EtUT ∀ t ≤ T , which is equivalent to

Ji(Xit, Dt, t) ≥ Et
∫ T

t

e−ρ(τ−t)
c1−γtiτ

1− γi
dτ + EtJi(Xit, Dt, T ) (37)

Since the first term is monotonic in T , by Eq. (33) and by the monotone convergence

theorem we have

Ji(Xit, Dt, t) ≥ Et
∫ ∞
t

e−ρ(τ−t)
c1−γtiτ

1− γi
dτ (38)

Now to show the opposite, consider first the limit EtJi(Xiτ , Dτ , τ) → 0 as τ → ∞.

Applying Itô’s lemma to Ji(Xit, Dt, t) and following similar steps as before, we find dJit =

Jit[µJtdt+ σJtdWt] where

µJt =
−1

Vi(D)

σJt = πitσt − θt

by the first order conditions Eqs. (28) and (29). By the boundedness assumptions σJt

satisfies Novikov’s conditions and we have that dηt = ηtσJtdWt acts as a change of measure

25



to remove the Brownian term in Jit. We have

|EtJi(X∗iτ , Dτ , τ)| ≤ Et
[
|Jiτ |exp

{
−
∫ T

t

1

Vi(Du)
du

}
ητ
ηt

]
≤ |Jit|e−(T−t)/C1Et

ητ
ηt

= |Jit|e−(T−t)/C1

Taking the limit in T gives the result.

Finally, define U∗t as for Ut, except evaluated at the optimum consumption. Then

dU∗t = Jit (πitσt − θt) dWt (39)

Again applying Novikov’s condition we get that U∗t is an exponential martingale, which

gives

Ji(Xit, Dt, t) = Et
∫ T

t

e−ρ(τ−t)
(c∗it)

1−γt

1− γi
dτ + EtJi(X∗it, Dt, T )

Finally, by the intermediate result the last term goes to zero, showing that we do indeed

have the optimum.

Appendix B. Numerical Methods

B.1. ODE Solution by Finite Difference

To solve for portfolios and wealth, one needs to solve the ode in Eq. (17). In this

work I use finite difference methos (see Press (2007)). In the following I suppress the i

subscript for clarity. Using a central difference scheme (assuming an evenly spaced grid),

the ode for a given i can be approximated as

0 = 1 + a(Dk)
Vk+1 − 2Vk + Vk−1

h2
+ b(Dk)

Vk+1 − Vk−1
2h

+ c(Dk)Vk

where Dk corresponds to the kth point in the grid, h the step size, a(Dk) = σ2
DD

2
k/2,

b(Dk) = ((1−γi)θ(Dk)σD/γi+µD)Dk, c(Dk) = ((1−γi)r(Dk)−ρ+(1−γi)θ(Dk)
2/(2γi))/γi.

This can be rewritten as a system of linear equations:

0 = 1 + (xk − yk)Vk−1 + (zk − 2xk)Vk + (xk + yk)Vk+1

where xk = a(Dk)/h
2, yk = b(Dk)/2h, and zk = c(Dk). Combining this system of

equations with the boundary conditions in Eq. (18) one gets a system of K− 2 equations

in K − 2 unknowns which takes a highly spars structure (Note: This paper takes the

approach of fixing limD→∞V
′(D) = 0, or a reflecting boundary condition. This seems to
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provide more stability and is confirmed by numerical simulations, although may not be

the ”best” approximation). This paper uses scipy.sparse to build the matrix equation

and solve for the value functions.

Appendix C. Extension to Infinite Types

Consider the limiting case as N → ∞. If we take the consumption weights, ωit =

ωt(γi, αi), we have a function of an empirical mean, which converges to the mean with

respect to the initial distribution by the Strong Law of Large Numbers:

ωt(γi, αi) =
N (Λ(γi, αi)e

ρtHt)
−1
γi∑N

j=1 (Λ(γj, αj)eρtHt)
−1
γj

→
N→∞

(Λ(γ, α)eρtHt)
−1
γ∫

(Λ(γ, α)eρtHt)
−1
γ dG(γ, α)

= ωt(γ, α)

This result is logical when viewed through the lens of work on a continuum of agents

à la Aumann (1964). However, the market clearing condition for consumption weights

implies something intriguing about their relationship to the initial distribution. If we

think of consumption weights as a ratio of probability measures, then they act as the

Radon-Nikodym derivative of a stochastic measure with respect to the distribution of the

initial condition. That is, define ωt(γ, α) = dPt(γ,α)
dG(γ,α)

. Then we have

∫
ωt(γ, α)dG(γ, α) =

∫
dPt(γ, α)

dG(γ, α)
dG(γ, α) =

∫
dPt(γ, α) = 1

The evolution of this distribution would be difficult to describe directly, but the expres-

sions in Proposition 3 give the dynamics of this stochastic distribution. So ωt(γ, α) allows

one to calculate exactly the evolution of this stochastic distribution by use of a change of

measure. Alternatively, one can think of ωt(γ, α) as a sort of importance weight, where

as the share of risky assets is concentrated towards one area in the support, the weight

of this area grows in the determination of asset prices.

Additionally, the Radon-Nikodym interpretation allows one the accuracy of finite

types as an approximation to continuous types. Say for instance we would like to discretize

the above expression for the market clearing condition on ωt(γ, α) using a Riemann sum

with an evenly spaced partition (e.g. a midpoint rule):

∫
ωt(γ, α)dG(γ, α) ≈

(γ − γ)(α− α)

JK

K∑
k=1

J∑
j=1

ωt(γk, αj)g(γk, αj) (40)

This looks quite similar to the market clearing conditions in the finite type model

(Eq. (4)). Make the identification N = JK and notice that since ωt(γ, α) is a geometric

Brownian motion, ωt(γ, α) = ω0(γ, α)ω̂t(γ, α) where ω̂t(γ, α) is a stochastic process with
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initial value 1. If we define the initial condition on omega as ω0(γ, α) = 1
(γ−γ)(α−α)g(γ,α) ,

then Eq. (40) becomes

∫
ωt(γ, α)dG(γ, α) ≈ 1

N

K∑
k=1

J∑
j=1

ω̂t(γk, αj) (41)

Now Eq. (41) matches exactly the condition in Eq. (4). However, this equation has

particular implications about the Radon-Nikodym derivative. From the definition of the

Radon-Nikodym derivative we can write

Pt(A) =

∫
A

ωt(γ, α)dG(γ, α) =

∫
A

ωt(γ, α)g(γ, α)dγdα

Substituting the imposed definition of ωt(γ, α) we have

Pt(A) =

∫
A

ω̂t(γ, α)

(γ − γ)(α− α)
dγdα

Now, since ω̂0(γ, α) = 1, the above implies

P0(A) =

∫
A

1

(γ − γ)(α− α)
dγdx =

∫
A

ω0(γ, α)g(γ, α)dγdα

This implies that the evenly spaced grid approximation of preference distributions pro-

duces a particular assumption about the initial condition ω0(γ, α)g(γ, α). The initial con-

dition in such an approximation is limited to a uniform distribution such that ω0(γ, α)g(γ, α) =
1

(γ−γ)(α−α) . Any change in initial consumption weights will change the underlying assump-

tions about the distribution g(γ, α).

The continuous types model provides several useful modeling tools beyond finite types.

First, the joint distribution of initial wealth and risk aversion is explicitly modeled. In a

model of finite types over an evenly spaced grid one can only model a product distribution

such that ω0(γ, α)g(γ, α) is uniform. Second, but closely related, is the computational

simplification provided by the continuum. One can simulate quadrature points to approx-

imate a continuous distribution, whereas to do the same for the finite types model would

require many simulated agents. Finally, the continuum allows one to coherently model

the distribution of risk preferences if one believes there to be many preference types and

if the number of types has an effect on model predictions.

28



Appendix D. Finite Types versus Continuous Types

Simulation

For the continuous types model we must approximate the integrals in some way. For

simplicity I use a trapezoidal rule. As an example, consider the definition of ξ(t) and its

associated quadrature approximation when there is only a single initial endowment type:

ξt =

∫
ω(t, γ, α)

γ
dG(γ, α) ≈

γ − γ
2(M − 1)

M−1∑
m=1

[
ωt(γm)g(γm)

γm
+
ωt(γm+1)g(γm+1)

γm+1

]

where (γm) is an evenly spaced grid. For finite types, changing the number of simulated

points changes the distribution g(γ) in the model, while for the continuous types solution,

changing the number of quadrature points does not change the assumptions about g(γ).

This will be the key feature that differentiates the two solutions.

Consider the same uniform distribution as before. In this case the results look almost

identical to the finite types case. In Figure 6 you can see that the interest rates are very

similar. This similarity is driven by the integral approximations and the fact that we are

using a uniform distribution over preferences. As pointed out in section C, we could only

match a uniform initial distribution. To see this we can look at robustness results for a

more complex assumption about the distribution of preferences and different methods of

approximation.

Fig. 6. Interest rates for different numbers of agents and quadrature points, respectively,
under the assumption of a uniform distribution of preferences.
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Appendix E. Simulation Robustness

Consider the case where preferences follow a Beta(2, 2) distribution over the same

support. In this case, we could take several approaches to solving the finite types model.

First, we could consider taking the same naive uniform approximation, fixing a uniform

distribution of consumption weights over the same support. Second, we could consider

initializing the consumption weights to match the same initial condition in the contin-

uous types case, i.e. ω0(γ) = g(γ). Third, we could attempt to use a monte-carlo

approximation, drawing many agents from the distribution g(γ). Finally, we could use

the continuous types model, directly. The interest rate is presented in Figure 7 for each

of these approximations.

You will notice that the solutions are substantially different. First, a uniform distri-

bution of agents is a poor approximation to a non-uniform distribution of preferences (as

one would expect). Second, the monte-carlo approximation converges to the continuous

types solution very slowly, but is much better than the uniform approximation. Finally,

one might think that changing the initial condition in ωt(γi) to match the distribution of

preferences one could recover the same solution. However, this simultaneously changes

the assumptions about the distribution g(γ), as was pointed out in section C, producing

a noticeably different interest rate.

In addition, the assumption of a Beta distribution over preferences changes the out-

come for financial variables. You’ll see in Figure 8 that not only is volatility substantially

higher for a longer period of time, but leverage is as well. Additionally, both variables ex-

hibit an inflection point. For very low values of Dt leverage cycles become pro-cyclical and

the volatility smile inverts. This difference with the uniform distribution case is driven

by the volatility in borrowing. In order to produce a pro-cyclical leverage cycle, total

borrowing must fall more quickly than total wealth. In this case, the less risk averse agent

is constrained by their wealth being very low and thus limiting their borrowing. When

dividends become low enough, their demand for borrowing collapses. In addition, pro-

cyclical leverage cycles are accompanied by pro-cyclical volatility, or an inverted volatility

skew. This comovement represents a testable implication.
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Fig. 7. Interest rate for different numbers of points and different approximation strategies
assuming preferences distributed Beta(2, 2).

31



Fig. 8. Leverage and volatility for different numbers of quadrature points assuming
continuous types distributed beta(2, 2).
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